Pharmaceuticals from marine sources: past, present and future
A guide to the use of bioassays in exploration of natural resources
Native and magnetically modified Ulva rigida biomass for dye removal
Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria
From the sea to aquafeed: A perspective overview
Editorial: Marine Biotechnology, Revealing an Ocean of Opportunities
Salinity-induced chemical, mechanical, and behavioral changes in marine microalgae
Evolution of prokaryotic colonisation of greenhouse plastics discarded into the environment
Biological Activity and Stability of Aeruginosamides from Cyanobacteria
A New Tool for Faster Construction of Marine Biotechnology Collaborative Networks
The Essentials of Marine Biotechnology
Marine Anticancer Agents: An Overview with a Particular Focus on Their Chemical Classes
A New Network for the Advancement of Marine Biotechnology in Europe and Beyond
Date of publication: 30 July 2024
A large proportion of the current pharmacopoeia can trace its origin back to nature. Biodiversity in the Earth’s largest habitat, the ocean, is greater than that on land, suggesting a huge potential for new bioactive chemistry. Compounds isolated from marine organisms have novel structures and modulate human disease targets with novel mechanisms of action. Around 15–20 marine-derived compounds have been approved for clinical use against cancer, pain, viral infection and heart disease. Some of the most potent compounds are directed towards cancer cells via linkage to an antibody. The approved marine-derived pharmaceuticals have been produced via (semi)-synthesis, while expression of the biosynthetic gene clusters in a microbial host is a future alternative for the production of those compounds. Technical improvements in the extraction, isolation and structural characterisation of marine-derived compounds, as well as the reduction in effort wasted in isolation of known compounds, have sped up the discovery process, meaning that industry is taking a renewed interest in this field as a source of pharmaceuticals with novel mechanisms of action to treat human disease with unmet need.
Date of publication: 14 May 2024
Date of publication: 5 January 2024
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Date of publication: 23 October 2023
Fifteen macroalgae collected at the Gulf of Saros, Turkey, were tested for the dye adsorption. Best results were obtained with Ulva rigida biomass. Magnetic modification of U. rigida biomass was performed with iron oxide microparticles synthesized by microwave irradiation of ferrous sulfate solution at high pH. Both native and magnetically modified U. rigida biomass efficiently adsorbed malachite green and safranin O used as model dyes; high maximum adsorption capacity (up to 227 mg/g) was achieved. In addition, combined adsorption/degradation malachite green removal in the presence of hydrogen peroxide employing also peroxidase-like activity of magnetically modified U. rigida biomass resulted in complete dye elimination in 24 hours.
Date of publication: 22 July 2023
Date of publication: 15 August 2023
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Date of publication: 10 August 2023
Date of publication: 22 June 2023
Blue Biotechnology is developing rapidly worldwide. However, the Nagoya Protocol (NP), Responsible Research and Innovation (RRI) and other regulatory requirements in this field are falling behind. This article identifies the main RRI, NP, and regulatory gaps and provides key recommendations to mitigate these challenges.
Date of publication: 16 June 2023
Ulva is a commercially important marine macroalga. It hosts both epiphytes and endophytes. The latter are assumed to protect Ulva through secondary metabolites. Previously, we demonstrated bioactive endophytes from macroalgae with great potential to control diseases of aquaculture. In this study, we introduced a bioactive bacterial endophyte back into its original host (Ulva sp.) and demonstrated its survival over time in fresh and freeze-dried Ulva sp. We visualized the endophyte’s location and survival in the seaweed using a Green Fluorescent Protein (GFP) reporter gene. The isolate colonized the intercellular space and survived for at least 5 months in fresh, and 12 months in freeze-dried algae, while maintaining its bioactivity against the aquaculture pathogen Streptococcus iniae. We studied the influence of the endophyte on the bacterial community in the Ulva sp. We found that once introduced, the endophyte significantly changed algal microbiota diversity and abundance. Two of Ulva’s associated bacterial species were quantified over time, suggesting different trends in absolute abundance of these bacteria between treatments. To the best of our knowledge, this is the first report of the successful introduction of an endophytic microorganism into macroalgal tissue. These findings may be useful in applied research for the potential management of aquaculture diseases.
Date of publication: 19 May 2023
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Date of publication: 3 October 2022
Aquaculture has been one of the fastest-growing food production systems sectors for over three decades. With its growth, the demand for alternative, cheaper and high-quality feed ingredients is also increasing. Innovation investments on providing new functional feed alternatives have yielded several viable alternative raw materials. Considering all the current feed ingredients, their circular adaption in the aquafeed manufacturing industry is clearly of the utmost importance to achieve sustainable aquaculture in the near future. The use of terrestrial plant materials and animal by-products predominantly used in aquafeed ingredients puts a heavily reliance on terrestrial agroecosystems, which also has its own sustainability concerns. Therefore, the aquafeed industry needs to progress with functional and sustainable alternative raw materials for feed that must be more resilient and consistent, considering a circular perspective. In this review, we assess the current trends in using various marine organisms, ranging from microorganisms (including fungi, thraustochytrids, microalgae and bacteria) to macroalgae and macroinvertebrates as viable biological feed resources. This review focuses on the trend of circular use of resources and the development of new value chains. In this, we present a perspective of promoting novel circular economy value chains that promote the re-use of biological resources as valuable feed ingredients. Thus, we highlight some potentially important marine-derived resources that deserve further investigations for improving or addressing circular aquaculture.
Date of publication: 26 April 2022
As the quest for marine-derived compounds with pharmacological and biotechnological potential upsurges, the importance of following regulations and applying Responsible Research and Innovation (RRI) also increases. This article aims at: (1) presenting an overview of regulations and policies at the international and EU level, while demonstrating a variability in their implementation; (2) highlighting the importance of RRI in biodiscovery; and (3) identifying gaps and providing recommendations on how to improve the market acceptability and compliance of novel Blue Biotechnology compounds. This article is the result of the work of the Working Group 4 “Legal aspects, IPR and Ethics” of the COST Action CA18238 Ocean4Biotech, a network of more than 130 Marine Biotechnology scientists and practitioners from 37 countries. Three qualitative surveys (“Understanding of the Responsible Research and Innovation concept”, “Application of the Nagoya Protocol in Your Research”, and “Brief Survey about the experiences regarding the Nagoya Protocol”) indicate awareness and application gaps of RRI, the Nagoya Protocol, and the current status of EU policies relating to Blue Biotechnology. The article categorises the identified gaps into five main categories (awareness, understanding, education, implementation, and enforcement of the Nagoya Protocol) and provides recommendations for mitigating them at the European, national, and organisational level.
Date of publication: 14 April 2022
Besides the importance of our oceans as oxygen factories, food providers, shipping pathways and tourism enablers, they hide an unprecedented wealth of opportunities. Marine organisms and microorganisms can be investigated and their primary and secondary metabolites can be used as lead agents for nutraceutical and pharmaceutical industries to improve our processes (e.g. in drug delivery) and as a source of bio-inspired material for numerous biotechnological applications. The important marine (blue) biotechnology field has gained visibility worldwide in many complementary scientific fields and has inspired the creation of several legislative, infrastructural and scientific collaborative networks. Ultimately, this field can become an important driver in economic development, in the creation of innovative clusters and in managing the sustainable development of coastal areas at a global scale.
To promote the exploitation of scientific outputs and commercialization of innovative products from marine organisms and microorganisms, a constant dialogue needs to be maintained between the scientific community, the legislative authorities, the industry, and the general public, who are the final beneficiaries and consumers of the developed products and processes. To bridge this gap, a recently launched COST Action “European transdisciplinary networking platform for marine biotechnology” (Ocean4Biotech) brings together experts in the field of marine biotechnology, to provide a platform for sharing experience, knowledge and technologies, and to design a roadmap for a more efficient and rapid development of marine biotechnology research in Europe and beyond.
With the aim of generating a compendium of processes and technologies as well as to map the current scientific actors in the field of marine biotechnology, this Research Topic invites you to submit original research, reviews, and opinions in all steps of the marine biotechnology development pipeline; from bioprospecting, metabolite/protein/enzyme/polymer isolation and characterization, dereplication, synthetic optimization, toxicology, bioassay screening, scale-up production, ethics, intellectual property, legislation, to commercialization and sustainability. This will enable the creation of a so-called cookbook for maximizing the impact of marine biotechnology development, which can be used for initiating, improving, and facilitating the dialogue amongst adjunct scientific fields, providing data, experts and their expertise that will, directly and indirectly, enhance blue growth.
Date of publication: 7 April 2022
This study examines how salinity reduction triggers the response of three marine microalgae at the molecular and unicellular levels in terms of chemical, mechanical, and behavioral changes. At the lowest salinity, all microalgal species exhibited an increase in membrane sterols and behaved stiffer. The glycocalyx-coated species Dunaliella tertiolecta was surrounded by a thick actin layer and showed the highest physiological activity, negatively affecting cell motility and indicating the formation of the palmella stage. The lipid content of membrane and the hydrophobicity of cell were largely preserved over a wide range of salinity, confirming the euryhaline nature of Dunaliella. The species with calcite-encrusted theca Tetraselmis suecica exhibited the highest hydrophobicity at the lowest salinity of all cells examined. At salinity of 19, the cells of T. suecica showed the lowest growth, flagellar detachment and the lowest cell speed, the highest physiological activity associated with a dense network of extracellular polymeric substances, and a decrease in membrane lipids, which could indicate develepment of cyst stage. The organosilicate encrusted species Cylindrotheca closterium appeared to be salinity tolerant. It behaved hydrophobically at lower salinity, whereas becoming hydrophilic at higher salinity, which might be related to a molecular change in the released biopolymers. This study highlighted the interplay between chemistry and mechanics that determines functional cell behavior and shows that cell surface properties and behavior could serve as stress markers for marine biota under climate change.
Date of publication: 24 January 2022
Current knowledge on the capacity of plastics as vectors of microorganisms and their ability to transfer microorganisms between different habitats (i.e. air, soil and river) is limited. The objective of this study was to characterise the evolution of the bacterial community adhered to environmental plastics [low-density polyethylene (LDPE)] across different environments from their point of use to their receiving environment destination in the sea. The study took place in a typical Mediterranean intermittent river basin in Larnaka, Cyprus, characterised by a large greenhouse area whose plastic debris may end up in the sea due to mismanagement. Five locations were selected to represent the environmental fate of greenhouse plastics from their use, through their abandonment in soil and subsequent transport to the river and the sea, taking samples of plastics and the surrounding environments (soil and water). The bacterial community associated with each sample was studied by 16S rRNA metabarcoding; also, the main physicochemical parameters in each environmental compartment were analysed to understand these changes. The identification and chemical changes in greenhouse plastics were tracked using Attenuated Total Reflection Fourier Transform Infra-red spectroscopy (ATR-FTIR). Scanning Electron Microscope (SEM) analysis demonstrated an evolution of the biofilm at each sampling location. β-diversity studies showed that the bacterial community adhered to plastics was significantly different from that of the surrounding environment only in samples taken from aqueous environments (freshwater and sea) (p-value p-value > 0.05). The environmental parameters (pH, salinity, total nitrogen and total phosphorus) explained the differences observed at each location to a limited extent. Furthermore, bacterial community differences among samples were lower in plastics collected from the soil than in plastics taken from rivers and seawater. Six genera (Flavobacterium, Altererythrobacter, Acinetobacter, Pleurocapsa, Georgfuchsia and Rhodococcus) were detected in the plastic, irrespective of the sampling location, confirming that greenhouse plastics can act as possible vectors of microorganisms between different environments: from their point of use, through a river system to the final coastal receiving environment. In conclusion, this study confirms the ability of greenhouse plastics to transport bacteria, including pathogens, between different environments. Future studies should evaluate these risks by performing complete sequencing metagenomics to decipher the functions of the plastisphere.
Date of publication: 21 January 2022
Date of publication: 23 December 2021
The Estremadura Spur pockmarks are a unique and unexplored ecosystem located in the North Atlantic, off the coast of Portugal. A total of 85 marine-derived actinomycetes were isolated and cultured from sediments collected from this ecosystem at a depth of 200 to 350 m. Nine genera, Streptomyces, Micromonospora, Saccharopolyspora, Actinomadura, Actinopolymorpha, Nocardiopsis, Saccharomonospora, Stackebrandtia, and Verrucosispora were identified by 16S rRNA gene sequencing analyses, from which the first two were the most predominant. Non-targeted LC-MS/MS, in combination with molecular networking, revealed high metabolite diversity, including several known metabolites, such as surugamide, antimycin, etamycin, physostigmine, desferrioxamine, ikarugamycin, piericidine, and rakicidin derivatives, as well as numerous unidentified metabolites. Taxonomy was the strongest parameter influencing the metabolite production, highlighting the different biosynthetic potentials of phylogenetically related actinomycetes; the majority of the chemical classes can be used as chemotaxonomic markers, as the metabolite distribution was mostly genera-specific. The EtOAc extracts of the actinomycete isolates demonstrated antimicrobial and antioxidant activity. Altogether, this study demonstrates that the Estremadura Spur is a source of actinomycetes with potential applications for biotechnology. It highlights the importance of investigating actinomycetes from unique ecosystems, such as pockmarks, as the metabolite production reflects their adaptation to this habitat
Date of publication: 20 October 2021
Biomass is defined as organic matter from living organisms represented in all kingdoms. It is recognized to be an excellent source of proteins, polysaccharides and lipids and, as such, embodies a tailored feedstock for new products and processes to apply in green industries. The industrial processes focused on the valorization of terrestrial biomass are well established, but marine sources still represent an untapped resource. Oceans and seas occupy over 70% of the Earth’s surface and are used intensively in worldwide economies through the fishery industry, as logistical routes, for mining ores and exploitation of fossil fuels, among others. All these activities produce waste. The other source of unused biomass derives from the beach wrack or washed-ashore organic material, especially in highly eutrophicated marine ecosystems. The development of high-added-value products from these side streams has been given priority in recent years due to the detection of a broad range of biopolymers, multiple nutrients and functional compounds that could find applications for human consumption or use in livestock/pet food, pharmaceutical and other industries. This review comprises a broad thematic approach in marine waste valorization, addressing the main achievements in marine biotechnology for advancing the circular economy, ranging from bioremediation applications for pollution treatment to energy and valorization for biomedical applications. It also includes a broad overview of the valorization of side streams in three selected case study areas: Norway, Scotland, and the Baltic Sea.
Date of publication: 02 August 2021
The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.
Date of publication: 17 May 2021
The increasing and rapid development in technologies, infrastructures, computational power, data availability and information flow has enabled rapid scientific advances. These entail transdisciplinary collaborations that maximize sharing of data and knowledge and, consequently, results, and possible technology transfer. However, in emerging scientific fields it is sometimes difficult to provide all necessary expertise within existing collaborative circles. This is especially true for marine biotechnology that directly addresses global societal challenges. This article describes the creation of a platform dedicated to facilitating the formation of short or mid-term collaborative networks in marine biotechnology. This online platform (https://www.ocean4biotech.eu/map/) enables experts (researchers and members of the marine biotechnology community in general) to have the possibility to showcase their expertise with the aim of being integrated into new collaborations/consortia on the one hand, or to use it as a search tool to complement the expertise in planned/running collaborations, on the other. The platform was created within the Ocean4Biotech (European transdisciplinary networking platform for marine biotechnology) Action, funded under the framework of the European Cooperation in Science and Technology (COST). To build the platform, an inquiry was developed to identify experts in marine biotechnology and its adjunct fields, to define their expertise, to highlight their infrastructures and facilities and to pinpoint the main bottlenecks in this field. The inquiry was open to all experts in the broad field of marine biotechnology, including non-members of the consortium. The inquiry (https://ee.kobotoolbox.org/single/UKVsBNtD) remains open for insertion of additional expertise and the resulting interactive map can be used as a display and search tool for establishing new collaborations.
Date of publication: 16 March 2021
Coastal countries have traditionally relied on the existing marine resources (e.g., fishing, food, transport, recreation, and tourism) as well as tried to support new economic endeavors (ocean energy, desalination for water supply, and seabed mining). Modern societies and lifestyle resulted in an increased demand for dietary diversity, better health and well-being, new biomedicines, natural cosmeceuticals, environmental conservation, and sustainable energy sources. These societal needs stimulated the interest of researchers on the diverse and underexplored marine environments as promising and sustainable sources of biomolecules and biomass, and they are addressed by the emerging field of marine (blue) biotechnology. Blue biotechnology provides opportunities for a wide range of initiatives of commercial interest for the pharmaceutical, biomedical, cosmetic, nutraceutical, food, feed, agricultural, and related industries. This article synthesizes the essence, opportunities, responsibilities, and challenges encountered in marine biotechnology and outlines the attainment and valorization of directly derived or bio-inspired products from marine organisms. First, the concept of bioeconomy is introduced. Then, the diversity of marine bioresources including an overview of the most prominent marine organisms and their potential for biotechnological uses are described. This is followed by introducing methodologies for exploration of these resources and the main use case scenarios in energy, food and feed, agronomy, bioremediation and climate change, cosmeceuticals, bio-inspired materials, healthcare, and well-being sectors. The key aspects in the fields of legislation and funding are provided, with the emphasis on the importance of communication and stakeholder engagement at all levels of biotechnology development. Finally, vital overarching concepts, such as the quadruple helix and Responsible Research and Innovation principle are highlighted as important to follow within the marine biotechnology field. The authors of this review are collaborating under the European Commission-funded Cooperation in Science and Technology (COST) Action Ocean4Biotech – European transdisciplinary networking platform for marine biotechnology and focus the study on the European state of affairs.
Date of publication: 17 December 2020
Plastics are very useful materials and present numerous advantages in the daily life of individuals and society. However, plastics are accumulating in the environment and due to their low biodegradability rate, this problem will persist for centuries. Until recently, oceans were treated as places to dispose of litter, thus the persistent substances are causing serious pollution issues. Plastic and microplastic waste has a negative environmental, social, and economic impact, e.g., causing injury/death to marine organisms and entering the food chain, which leads to health problems. The development of solutions and methods to mitigate marine (micro)plastic pollution is in high demand. There is a knowledge gap in this field, reason why research on this thematic is increasing. Recent studies reported the biodegradation of some types of polymers using different bacteria, biofilm forming bacteria, bacterial consortia, and fungi. Biodegradation is influenced by several factors, from the type of microorganism to the type of polymers, their physicochemical properties, and the environment conditions (e.g., temperature, pH, UV radiation). Currently, green environmentally friendly alternatives to plastic made from renewable feedstocks are starting to enter the market. This review covers the period from 1964 to April 2020 and comprehensively gathers investigation on marine plastic and microplastic pollution, negative consequences of plastic use, and bioplastic production. It lists the most useful methods for plastic degradation and recycling valorization, including degradation mediated by microorganisms (biodegradation) and the methods used to detect and analyze the biodegradation.
Date of publication: 4 December 2020
The marine environment is a rich source of biologically active molecules for the treatment of human diseases, especially cancer. The adaptation to unique environmental conditions led marine organisms to evolve different pathways than their terrestrial counterparts, thus producing unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds have been isolated from marine micro- and macro-organisms including but not limited to fungi, bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G), fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin. This review focuses on the bioactive molecules derived from the marine environment with anticancer activity, discussing their families, origin, structural features and therapeutic use.
Date of publication: 24 October 2020
Diffuse large B-cell lymphoma (DLBCL) is the commonest type of lymphomas, accounting for 30%-40% of new cases each year. Despite the big improvements achieved in the treatment, still 25–40% of patients still succumb due to refractory or relapsed disease. This highlights the need of new drugs for this cancer. The marine environment has recently been recognized as a source of anti-cancer compounds, as demonstrated by different marine drugs approved by different regulatory agencies (trabectedin, cytarabine, eribulin, plitidepsin) or as components of antibody drug conjugates for lymphoma patients (monomethyl auristatin E in polatuzumab vedotin and brentuximab vedotin). Here, we present a large screening of fractions obtained from different marine invertebrates collected in Ireland and in the Pacific Ocean on DLBCL cell lines.
Date of publication: 12 May 2020
Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anti-coagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond.